Breast Cancer: A Focus on HER2 Targeted Therapy

Canadian Cardiac Oncology Network Meeting
Montreal
April 26th, 2019

Tallal Younis, MBBCh. FRCP (UK). FACP.
Professor of Medicine, Dalhousie University
Medical Oncologist, QE II Health Sciences Centre
Disclosures

Dr Younis has participated in various advisory boards, and acted as consultant and expert witness, for Roche Canada (Trastuzumab, Pertuzumab, and TDM1)
Talk Objectives
Clinical Applications in Cardio-Oncology

✓ To highlight the role of anti-HER2 therapy in the management of HER2 positive breast cancers.
✓ To review the cardio-toxicity risks associated with anti-HER2 therapy in breast cancers.
✓ To illustrate the current management approach for anti-HER2 therapy associated cardiotoxicity.
Breast Cancer Subtypes

- HER2 positive
- ER / PR positive

Basal like

HER2 Enriched

Luminal
 Low Risk

Luminal
 High Risk
HER2 Testing
(IHC & FISH)

- Her-2/neu (red signals)
- CEB 17 (green signals)

“High-level Her-2/neu protein expression”
Systemic Therapy for Breast Cancer

0
Pre Invasive

I
Early Stage

II
Locally Advanced

III
Metastatic

Curative Intent
Local (Surgery +/- XRT) +/- Systemic
Survivorship (& Relapse)

Palliative Intent
Systemic +/- Local
End of Life Care

Adjuvant & (NeoAdjuvant)

Palliative
Trastuzumab Cardiotoxicity

- Taxol: 1%
- AC: 8%
- Taxol + TZ: 13%
- AC + TZ: 27%

Retrospective Review
Asymptomatic & Symptomatic Cardiac Dysfunction

Adjuvant Trastuzumab in Breast Cancer

Disease Free Survival

Yin et al, PLoS One 2011
Adjuvant Trastuzumab Cardiotoxicity

<table>
<thead>
<tr>
<th>Cochrane Meta-Analysis</th>
<th>↓ LVEF</th>
<th>HF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trastuzumab (n= 5471)</td>
<td>11.2%</td>
<td>2.5%</td>
</tr>
<tr>
<td>Control (n=4810)</td>
<td>5.6%</td>
<td>0.4%</td>
</tr>
</tbody>
</table>

Relative Risk (95%CI)
- Trastuzumab vs Control: 1.83 (1.36 -2.47) vs 5.11 (3.00-8.72)

Anti HER2 based Therapy for Breast Cancer

Benefit

Early Stages: ↓ Relapse & ↑ OS
Metastatic: ↑ QOL & ↑ OS

Risk

Cardio-Toxicity
Trastuzumab Cardiotoxicity (Risk Factors)

Patient
- Older Age
- Lower Baseline LVEF% (or CHF)
- Underlying CVS Risks (HTN, CAD, AF, DM, Obesity, Dyslipidemia, Renal Failure)

Treatment
- Longer vs Shorter Anti HER2 therapy
- Concurrent vs Sequential Therapy
- Anthracycline Use (current or past)
Trastuzumab Cardiac Toxicity
(Duration of Trastuzumab Therapy)

Cumulative Incidence of Cardiac Endpoints*

* Competing risk analysis with disease-free survival events considered as competing risks. The majority of cardiac events are reversible (Proctor et al. JCO 2010)

HERA Trial

Goldhirsch et al, SABCS 2012
Trastuzumab Cardiac Toxicity (Duration of Trastuzumab Therapy)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Longer (1-Year) vs shorter (6 or 3 Months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS</td>
<td>HR = 1.13; 95% CI 1.03–1.25; p=0.01</td>
</tr>
<tr>
<td>OS</td>
<td>HR = 1.16; 95% CI 1.01–1.32; p=0.03</td>
</tr>
<tr>
<td>Cardiac</td>
<td>OR = 0.52; 95% CI 0.43–0.62; p < 0.00001</td>
</tr>
</tbody>
</table>

Meta-Analysis

Six studies (11,496 Patients)

Chen et al, Cancer Treat Rev 2019
Trastuzumab Cardiac Toxicity
Concurrent vs Sequential

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Sequential</th>
<th>Concurrent</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 9831</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incidence</td>
<td>0.0%</td>
<td>2.2%</td>
<td>3.3%</td>
</tr>
<tr>
<td>95% CI</td>
<td>(0.0-0.7%)</td>
<td>(1.1-3.8%)</td>
<td>(2.0-5.1%)</td>
</tr>
</tbody>
</table>

At 9 months analysis (500 patients per arm) for normal or \(\leq 15 \% \) decrease in LVEF after AC. Concurrent received 3 additional months of Trastuzumab.

Perez et al. Proc ASCO 2005
BCIRG 006 Trial

<table>
<thead>
<tr>
<th>Arm</th>
<th>CHF</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AC → T</td>
<td>7</td>
<td>(0.7%)</td>
</tr>
<tr>
<td>AC → TH</td>
<td>21</td>
<td>(2.0%)</td>
</tr>
<tr>
<td>TCH</td>
<td>4</td>
<td>(0.4%)</td>
</tr>
</tbody>
</table>

No Cardiac Deaths. CHF NYHA G3-4

Disease-Free Survival

- AC → TH: 84% at 6 years (HR = 0.75, p = 0.04)
- TCH: 75% at 6 years (HR = 0.64, p < 0.001)

Overall Survival

- AC → TH: 92% at 6 years (HR = 0.77, p = 0.04)
- TCH: 91% at 6 years (HR = 0.63, p < 0.001)

Slamon et al, NEJM 2011
Real-World Trastuzumab CardioToxicity
“OHERA Observational Study”

3733 Patients (Stages I-IIIB)

CHF NYHA II-IV : 2.8%
Cardiac Deaths : 0.2%*
CHF Resolution : 73%

*All with cardiac disease history

CHF Risk Factors

• Age ≥ 65
• Cardiac History
• Hypertension
• CVS Medications
• Baseline LVEF ≤ 55%

Lidbrink et al, Breast Cancer Research Treatment 2019
Anti HER2 Systemic Therapy for Breast Cancer

Baselga et al, Crit Rev Oncol Hematol. 2017
<table>
<thead>
<tr>
<th></th>
<th>Cap + Lap</th>
<th>T-DM1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac dysfunction AEs<sup>a</sup>, n (%)</td>
<td>(n=488)</td>
<td>(n=490)</td>
</tr>
<tr>
<td>All grades</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 3</td>
<td>2 (0.4)</td>
<td>1 (0.2)</td>
</tr>
<tr>
<td>Lowest post-baseline LVEF value, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥45%</td>
<td>454 (98.5)</td>
<td>476 (98.8)</td>
</tr>
<tr>
<td>≥40 to <45%</td>
<td>4 (0.9)</td>
<td>3 (0.6)</td>
</tr>
<tr>
<td><40%</td>
<td>3 (0.7)</td>
<td>3 (0.6)</td>
</tr>
<tr>
<td>LVEF <50% and ≥15-point decrease from baseline, n (%)</td>
<td>(n=445)</td>
<td>(n=481)</td>
</tr>
<tr>
<td></td>
<td>7 (1.6)</td>
<td>8 (1.7)</td>
</tr>
</tbody>
</table>

Verma et al, NEJM 2012
Anti HER2 Systemic Therapy for Breast Cancer

Adjuvant
- Trastuzumab + Chemo
- Trastuzumab + Chemo +/- Pertuzumab
- Trastuzumab + Chemo +/- TDM1

NeoAdjuvant
- Trastuzumab + Chemo +/- Pertuzumab
- Trastuzumab + Chemo +/- TDM1

Combination Treatment NOT associated with ↑↑ Cardiotoxicity
- Trastuzumab + Chemo +/- Pertuzumab
- TDM1
- Capecitabine + Lapatinib
Prevention: Exercise & Prophylactic Medications

Cardio-Oncology Clinics

Cardio-Toxicity Management

Baseline history, physical exam, assessment of LVEF; consider baseline troponin and global longitudinal strain in high-risk patients.

High-risk: LVEF 50-55%, or age ≥60 years, or ≥2 risk factors for cardiotoxicity, does not meet criteria for extreme high-risk.

Low-risk: LVEF >50%.

Risk factors:
- Cardiac history
- Diabetes
- Hypertension
- Smoking history
- Family history
- Prior treatment with anthracyclines
- Prior treatment with taxanes
- Prior treatment with trastuzumab

Baseline LVEF ≥50%:
- Continue medical therapy for HER2 therapy unless the benefit exceeds the HF risk (see text).
- HER2 tumor: decrease in LVEF ≥10% or to ≤50%.
- HER2 tumor: LVEF <50% and/or symptomatic HF:
 - Initiation of HER2 therapy.
 - Initiation of ARB and beta-blocker; reassessment in 4 weeks.
- HER2 tumor: Asymptomatic and LVEF ≥50%:
 - Initiation of ARB and beta-blocker; reassessment in 4 weeks.
 - LVEF <50% and/or symptomatic HF:
 - Initiation of HER2 therapy.
- Asymptomatic and LVEF ≥60%:
 - Continue medical therapy for HER2 therapy.
Trastuzumab-based Therapy for Breast Cancer

Benefit
- Early Stages: ↓ Relapse & ↑ OS
- Metastatic: ↑ QOL & ↑ OS

Risk
- Cardio-Toxicity

Prognostic & Predictive

Patient Selection & Management
Conclusions

- Anti-HER2 therapy is a pivotal component of the current treatment of HER2 positive breast cancer.
- The predominant concerning adverse event during anti-HER2 based therapy is cardiotoxicity.
- Anti HER2 therapy decisions depend on predicted benefits and anticipated / encountered cardiotoxicities.
- The role of preventive measures for cardio-toxicity within treatment paradigms require further research.
In the era of improved breast cancer outcomes achieved with refined anti HER2 therapy, the management (& prevention) of associated cardio-toxicities is critical.