Amyloidosis: Challenges in Diagnosis and Management

Ronald Witteles, MD
Co-Director, Stanford Amyloid Center
Associate Professor of Cardiovascular Medicine
Program Director, Internal Medicine Residency Program
Stanford University School of Medicine

@Ron_Witteles
We Only Have 20 Minutes!
What We Will/Won’t Cover

<table>
<thead>
<tr>
<th>Will cover</th>
<th>Won’t cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basics of AL vs. ATTR subtypes</td>
<td>When should you suspect amyloidosis?</td>
</tr>
<tr>
<td>Biopsy vs. PYP scan</td>
<td>Prevalence data</td>
</tr>
<tr>
<td>AL therapy:</td>
<td>Types other than AL/ATTR</td>
</tr>
<tr>
<td>- Chemotherapy vs. Immunotherapy vs. ASCT</td>
<td>Prognostic data</td>
</tr>
<tr>
<td>ATTR therapy:</td>
<td>Supportive cardiac therapy</td>
</tr>
<tr>
<td>- Stabilizers</td>
<td>Role of ICDs</td>
</tr>
<tr>
<td>- Knockdown agents</td>
<td>Role of heart transplant</td>
</tr>
</tbody>
</table>

AL = Amyloid Light Chain, ATTR = Amyloid Tangloulus Ribonucleic Transcript
Amyloidosis: What is it?

- *Amylum* – Starch (Latin)

- Generic term for *many* diseases:
 - Protein misfolds into β-sheets ➔
 - Forms into 8-10 nm fibrils ➔
 - Extracellular deposition into amyloid deposits
Types of Amyloid – Incomplete List

Systemic:
- **Light chains (AL)** – “Primary”
- **Transthyretin (ATTR)** – “Senile” or “Familial”
- **Serum amyloid A (AA)** – “Secondary”

Localized – Not to be memorized!
- Beta-2 microglobulin (A-β2) – Dialysis (osteoarticular structures)
- Apolipoprotein A-1 (AApoA-I) – Age-related (aortic intima, cardiac, neuropathic)
- Apolipoprotein A-2 (AApoA-2) – Hereditary (kidney)
- Calcitonin (ACal) – Complication of thyroid medullary CA
- Islet amyloid polypeptide (AIAPP) – Age-related (seen in DM)
- Atrial natriuretic peptide (AANF) – Age-related (atrial amyloidosis)
- Prolactin (APro) – Age-related, pituitary tumors
- Insulin (AIns) – Insulin-pump use (local effects)
- Amyloid precursor protein (ABeta) – Age-related/hereditary (Alzheimers)
- Prion protein (APrPsc) – Hereditary/sporadic (spongiform encephalopathies)
- Cystatin-C (ACys) – Hereditary (cerebral hemorrhage)
- Fibrinogen alpha chain (AFib) – Hereditary (kidney)
- Lysozome (ALys) – Hereditary (Diffuse, especially kidney, spares heart)
- Medin/Lactadherin – Age-related (medial aortic amyloidosis)
- Gelsolin (AGel) – Hereditary (neuropathic, corneal)
- Keratin – Cutaneous
AL: A Brief Dive into Hematology...

- Plasma cells: Make antibodies
 - Reside in bone marrow & elsewhere

- Antibodies: Made up of light chains & heavy chains
 - Heavy chain: Determine class of antibody (IgG, IgM, etc.) and part of antibody’s specificity
 - Light chain: Two types (κ and λ) – determine part of antibody’s specificity

- What happens when someone develops a clonal plasma cell population?
Plasma Cells Gone Wrong

Three things happen:
- Plasma cell clones take over % of bone marrow
- Plasma cells produce a clonal antibody (IgG-λ)
- Plasma cells produce excess light chain (λ)

Possible outcome 1:
- Only small % of marrow taken over, circulating light chains don’t deposit → MGUS

Possible outcome 2:
- Large % of marrow taken over (and possible consequences thereof) → Myeloma

Possible outcome 3:
- Circulating light chains deposit in tissue → AL Amyloidosis

Note: Possibilities 2 & 3 can coexist – but don’t have to
Transthyretin (TTR)

- Transthyretin = “Transports thyroxine and retinol”
 - Primary source: Liver

- Almost completely circulates as a tetramer
 - In steady-state with monomeric form
 - Thyroxine binding $\xrightarrow{}$ stabilizes tetramer

- Monomeric TTR is inherently ‘amyloidogenic’

- Mutations in TTR can make it even more amyloidogenic
 - Some mutations favor cardiac deposition, others nerve deposition
AL vs. ATTR: Diagnostic Clues

AL:
- Multiorgan involvement
 - Proteinuria, high alkaline phosphatase, dysphagia, macroglossia
 - Abnormal free light chain ratio

ATTR:
- Vital organ involvement: Heart +/- Nerves
- Laboratory: Transthyretin gene testing (hereditary only)

Both:
- Carpal tunnel syndrome
- Persistently abnormal troponins
- EKG abnormalities
Biopsy – Gold Standard & Only Way to Diagnose AL

- Our general practice:
 - Biopsy of clinically involved organ

- Testing for amyloid subtype
 - Immunofluorescence or Mass spectrometry

<table>
<thead>
<tr>
<th>Organ</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal fat pad</td>
<td>“70%” (?)</td>
</tr>
<tr>
<td>Bone marrow</td>
<td>50-56%</td>
</tr>
<tr>
<td>Rectal</td>
<td>70-85%</td>
</tr>
<tr>
<td>Clinically involved organ</td>
<td>Nearly 100%</td>
</tr>
</tbody>
</table>
Biopsy – Gold Standard & Only Way to Diagnose AL

- Our general practice:
 - Biopsy of clinically involved organ

- Testing for amyloid subtype
 - Immunofluorescence or Mass spectrometry

<table>
<thead>
<tr>
<th>Organ</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal fat pad</td>
<td>“70%” (?)</td>
</tr>
<tr>
<td>Bone marrow</td>
<td>50-56%</td>
</tr>
<tr>
<td>Rectal</td>
<td>70-85%</td>
</tr>
<tr>
<td>Clinically involved organ</td>
<td>Nearly 100%</td>
</tr>
</tbody>
</table>
Technetium Pyrophosphate (PYP) Scanning

- ^{99m}Tc-pyrophosphate (PYP)
 - Old nuclear bone scan agent
 - Taken up by hearts infiltrated with ATTR but not AL amyloidosis
 - Similar agent ^{99m}Tc-DPD in Europe – but unavailable in USA
Assessments

- **Visual scoring system**
 - 0 = No cardiac uptake
 - 1 = Mild cardiac uptake, less than ribs
 - 2 = Moderate cardiac uptake, equal to ribs
 - 3 = High cardiac uptake, greater than ribs

- **Quantitative**
 - Region of interest drawn around the heart, photon counts measured
 - Identical region of interest drawn around contralateral chest, photon counts measured
 - Ratio of heart:contralateral chest counts (H/CL) measured

How Reliable are PYP Scans – Particularly for ATTR vs. AL?

How Reliable are PYP Scans – Particularly for ATTR vs. AL?

Largest Study of PYP/DPD

- Study across 8 centers in 5 countries (N=1217)
- All patients with suspected or proven ATTR amyloidosis received:
 - Bone scintigraphy (PYP or DPD or HMDP)
 - SPIE/UPIE
 - Serum FLC
- 27% (!) of AL amyloid patients had positive PYP scans, but...
- The key – HIGH specificity for ATTR amyloidosis when you combine r/o monoclonal protein with scintigraphy
 - Sensitivity: 74%
 - Specificity: 100%

Diagnostic Algorithm

Clinically Suspect Amyloidosis

FLC Ratio Normal

PYP Scan

- No Amyloidosis

Genetic Testing

+ hATTR Amyloidosis

- wtATTR Amyloidosis

FLC Ratio Abnormal

Biopsy clinically involved organ with IF or Mass Spec

ATTR

AL

AL Amyloidosis
Treatment: AL Amyloidosis
It’s All About the Free Light Chains!

• One therapy is not in and of itself better than another
 • Considerations:
 • Effect on FLC
 • Tolerability
 • True for:
 • Chemotherapy
 • Immunotherapy
 • Stem cell transplant
AL Amyloid: NEJM Trial MP vs. Colchicine

Adapted from Kyle et al. NEJM. 1997;336:1202-7.
Only Randomized Data: French Intergroup, 2007

- 100 patients randomized to melphalan/dexamethasone vs. stem-cell transplant

- Note: No newer chemo regimens (!)
Overall Survival: Favors “Standard” Chemo!

Landmark Analysis: Lived 6 months & Completed Rx

New Paradigm: Much More Effective Chemotherapy

- Immunomodulatory & anti-angiogenic agents
 - Lenalidomide
 - Pomalidomide
- Proteasome inhibitors:
 - Bortezomib
 - Carfilzomib
 - Ixazomib
- Monoclonal antibodies
 - Daratumumab (antibody to CD38)
 - Elotuzumab (antibody to SLAMF7 – on myeloma/NK cells)
- 2018 light-chain directed therapy:
 - Combination of proteasome inhibitor, immunomodulatory agent, steroid, and alkylator in some form (usually 1-2 + dex)
 - Daratumumab early (?)
Daratumumab

- Daratumumab: CD38-directed monoclonal antibody approved for myeloma
- Stanford study of 25 consecutive AL amyloidosis patients with inadequate responses to prior chemotherapy
 - Median # of prior therapies: 3
- Extremely well-tolerated
 - Only mild infusion reactions

Figure 1. Waterfall plot demonstrating percent reduction of the dFLC in response to daratumumab. Best hematologic response is color coded; 100% of patients had a decrease in the dFLC.

ANDROMEDA Trial

- Phase 3 randomized trial of 370 newly diagnosed AL amyloidosis patients
 - CyBorD
 - CyBorD + Daratumumab

- Primary outcome:
 - % of patients with complete hematologic response (negative SPIE/UPIE, normal FLC ratio)

- Secondary outcomes:
 - Many – including organ response rates, progression free survival, overall survival

- Currently enrolling – new standard of care?

Adapted from clinicaltrials.gov, NCT03201965.
ATTR Amyloidosis
Strategies to Prevent TTR Amyloid Deposition

- Stabilize tetrameric form of TTR
 - Tafamidis
 - NSAIDs (diflunisal)
 - AG10

- Knock down production of TTR in all forms
 - RNA inhibition/interference
Tafamidis Trial in “FAP”

- Phase 3 trial conducted at 8 sites in Europe & South America

- 128 patients with FAP due to V30M mutation randomized to tafamidis or placebo x 18 months
 - Primary endpoint: “Responder” or “Nonresponder”
 - Occurrence of liver transplant → “Nonresponder”
 - 69% on liver transplant list at start of study (!)
 - 13 patients in each group (21%) transplanted during study
Tafamidis FAP Trial

Tafamidis FAP Trial

Secondary Endpoints

Tafamidis Approval for FAP
Tafamidis Approval for FAP
Tafamidis Approval for FAP
Tafamidis Approval for FAP
NSAIDs/Diflunisal

- NSAIDs – Found on screening to stabilize transthyretin
- Diflunisal: FDA approved for arthritis pain
 - Found to be most effective NSAID at binding to TTR
- Double-blind, placebo-controlled clinical trial for FAP reported in December, 2013

Adapted from Berk et al. JAMA. 2013;310:2658-2667.
Diflunisal Study: NIS+7 Score

Change from baseline

1 year 2 years

Placebo Diflunisal

P=.02

P<.001

Adapted from Berk et al. JAMA. 2013;310:2658-2667.
RNA Interference & Antisense

- Knocks down total amount of circulating transthyretin (TTR)

- Two similar approaches attempted:
 - Patisiran (siRNA)
 - Inotersen (anti-sense)

Patisiran: APOLLO Trial

- 225 patients with hATTR polyneuropathy

- Randomized to patisiran (q3 week IV) vs. placebo (2:1 randomization), double-blind
 - Premeds: Dexamethasone, acetaminophen, diphenhydramine, H2 blocker

- Primary endpoint
 - Change in mNIS+7 score at 18 months

- Well-tolerated – only mild infusion reactions

- Results… Spectacular!

APOLLO Results: mNIS+7

mNIS+7: Change from Baseline

Placebo

Difference at 18 mos (Pati – PBO): -33.99
p-value: 9.26×10^{-24}

APOLLO Results: mNIS+7

Just How Low Is that P-Value???

- Major heart failure trials
 - Carvedilol (COPERNICUS)
 - $P=0.00002$, $N=2289$
 - Enalapril (SOLVD)
 - $P=0.0036$, $N=2569$
 - Metoprolol (MERIT-HF)
 - $P=0.0062$, $N=3991$

- Put another way…
 - Result is about a thousand million trillion times more likely to be real/true than the major HF trials… and with an N of 225!!!
Another Way of Looking at It

- There are approximately 7.5×10^{18} grains of sand on earth

- Imagine we have the sand from 1 million Earths
 - 2 people randomly chose a single grain of sand
 - The chances that the result isn’t true would be the chances of 2 people randomly picking the same single grain
“So You’re Telling Me There’s a Chance!”
APOLLO Cardiac Subgroup Data

Inotersen: Neuro-TTR Trial

- 172 patients with mATTR polyneuropathy (Stage 1/2)
- Randomized to inotersen (weekly SQ) vs. placebo (2:1 randomization), double-blind
- Safety concerns (all in inotersen arm):
 - Thrombocytopenia (low platelet count): 3 Serious Adverse Events (SAE) – including 1 death due to intracranial hemorrhage
 - Kidney events: 6 SAE
 - Deaths: 5 (inotersen), 0 (placebo)

- Cardiac subgroup analysis (inotersen vs. placebo), N=108:
 - LV septal wall thickness (mm): -0.42, +0.15 (P=0.27)
 - No significant changes in GLS, EF, LV mass

mNIS+7: Patisiran vs. Inotersen

Mean TTR Reduction:

Patisiran: 81%
Inotersen: 71%
Patisiran vs. Inotersen: Tale of the Tape

<table>
<thead>
<tr>
<th></th>
<th>Patisiran</th>
<th>Inotersen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ease of administration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level of TTR Knockdown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efficacy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac data</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Patisiran vs. Inotersen: Tale of the Tape

<table>
<thead>
<tr>
<th></th>
<th>Patisiran</th>
<th>Inotersen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ease of administration</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Level of TTR Knockdown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efficacy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac data</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Patisiran vs. Inotersen: Tale of the Tape

<table>
<thead>
<tr>
<th></th>
<th>Patisiran</th>
<th>Inotersen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ease of administration</td>
<td>✔️</td>
<td>☐</td>
</tr>
<tr>
<td>Level of TTR Knockdown</td>
<td>✔️</td>
<td>☐</td>
</tr>
<tr>
<td>Efficacy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac data</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Patisiran vs. Inotersen: Tale of the Tape

<table>
<thead>
<tr>
<th>Ease of administration</th>
<th>Patisiran</th>
<th>Inotersen</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔️</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level of TTR Knockdown</th>
<th>Patisiran</th>
<th>Inotersen</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔️</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Efficacy</th>
<th>Patisiran</th>
<th>Inotersen</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔️</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Safety</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Cardiac data</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Feature</th>
<th>Patisiran</th>
<th>Inotersen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ease of administration</td>
<td>✔️</td>
<td>□</td>
</tr>
<tr>
<td>Level of TTR Knockdown</td>
<td>✔️</td>
<td>□</td>
</tr>
<tr>
<td>Efficacy</td>
<td>✔️</td>
<td>□</td>
</tr>
<tr>
<td>Safety</td>
<td>✔️</td>
<td>□</td>
</tr>
<tr>
<td>Cardiac data</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Patisiran vs. Inotersen: Tale of the Tape

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Patisiran</th>
<th>Inotersen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ease of administration</td>
<td>✔️</td>
<td>❑</td>
</tr>
<tr>
<td>Level of TTR Knockdown</td>
<td>✔️</td>
<td>❑</td>
</tr>
<tr>
<td>Efficacy</td>
<td>✔️</td>
<td>❑</td>
</tr>
<tr>
<td>Safety</td>
<td>✔️</td>
<td>❑</td>
</tr>
<tr>
<td>Cardiac data</td>
<td>✔️</td>
<td>❑</td>
</tr>
</tbody>
</table>

ATTR-ACT Study – Tafamidis for ATTR Cardiomyopathy

- Phase 3, Randomized, Placebo-Controlled clinical trial of tafamidis for ATTR cardiomyopathy
 - Wild-type or familial
 - 441 patients worldwide x 2.5 years
 - Primary endpoint:
 - Mortality & CV Hospitalization
 - Hierarchical endpoint (Finkelstein-Schoenfeld method)
- Key secondary endpoints:
 - Change in Quality of life (KCCQ)
 - Change in 6MWT

Adapted from Maurer et al. N Engl J Med. Published online before print August 27, 2018.
Primary Endpoint

A Primary Analysis, with Finkelstein–Schoenfeld Method

<table>
<thead>
<tr>
<th></th>
<th>No. of Patients</th>
<th>P Value from Finkelstein–Schoenfeld Method</th>
<th>Win Ratio (95% CI)</th>
<th>Patients Alive at Mo 30 no. (%)</th>
<th>Average Cardiovascular-Related Hospitalizations during 30 Mo among Those Alive at Mo 30 per patient per yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pooled Tafamidis</td>
<td>264</td>
<td><0.001</td>
<td>1.70 (1.26–2.29)</td>
<td>186 (70.5)</td>
<td>0.30</td>
</tr>
<tr>
<td>Placebo</td>
<td>177</td>
<td></td>
<td></td>
<td>101 (57.1)</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Adapted from Maurer et al. *N Engl J Med.* Published online before print August 27, 2018.
Primary Endpoint

<table>
<thead>
<tr>
<th></th>
<th>No. of Patients</th>
<th>P Value from Finkelstein–Schoenfeld Method</th>
<th>Win Ratio (95% CI)</th>
<th>Patients Alive at Mo 30 no. (%)</th>
<th>Average Cardiovascular-Related Hospitalizations during 30 Mo per patient per yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pooled Tafamidis</td>
<td>264</td>
<td><0.001</td>
<td>1.70 (1.26–2.22)</td>
<td>186 (70.5)</td>
<td>0.30</td>
</tr>
<tr>
<td>Placebo</td>
<td>177</td>
<td></td>
<td></td>
<td>101 (57.1)</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Adapted from Maurer et al. *N Engl J Med.* Published online before print August 27, 2018.
Primary Endpoint

<table>
<thead>
<tr>
<th></th>
<th>No. of Patients</th>
<th>P Value from Finkelstein–Schoenfeld Method</th>
<th>Win Ratio (95% CI)</th>
<th>Patients Alive at Mo 30 no. (%)</th>
<th>Average Cardiovascular-Related Hospitalizations during 30 Mo per patient per yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pooled Tafamidis</td>
<td>264</td>
<td><0.001</td>
<td>1.70 (1.26–2.22)</td>
<td>186 (70.5)</td>
<td>0.30</td>
</tr>
<tr>
<td>Placebo</td>
<td>177</td>
<td></td>
<td></td>
<td>101 (57.1)</td>
<td>0.46</td>
</tr>
</tbody>
</table>

NNT to prevent 1 death at 30 months: 7.5 (!)
Survival

Adapted from Maurer et al. N Engl J Med. Published online before print August 27, 2018.
Frequency of Cardiovascular-Related Hospitalizations

<table>
<thead>
<tr>
<th></th>
<th>No. of Patients</th>
<th>No. of Patients with Cardiovascular-Related Hospitalizations</th>
<th>Cardiovascular-Related Hospitalizations</th>
<th>Pooled Tafamidis vs. Placebo Treatment Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>total no. (%)</td>
<td>no. per yr</td>
<td>relative risk ratio (95% CI)</td>
</tr>
<tr>
<td>Pooled Tafamidis</td>
<td>264</td>
<td>138 (52.3)</td>
<td>0.48</td>
<td>0.68 (0.56–0.81)</td>
</tr>
<tr>
<td>Placebo</td>
<td>177</td>
<td>107 (60.5)</td>
<td>0.70</td>
<td></td>
</tr>
</tbody>
</table>

Adapted from Maurer et al. N Engl J Med. Published online before print August 27, 2018.
CV Hospitalizations

<table>
<thead>
<tr>
<th>Group</th>
<th>No. of Patients</th>
<th>No. of Patients with Cardiovascular-Related Hospitalizations (total no. (%))</th>
<th>Cardiovascular-Related Hospitalizations no. per yr</th>
<th>Pooled Tafamidis vs. Placebo Treatment Difference relative risk ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pooled Tafamidis</td>
<td>264</td>
<td>138 (52.3)</td>
<td>0.48</td>
<td>0.68 (0.56–0.81)</td>
</tr>
<tr>
<td>Placebo</td>
<td>177</td>
<td>107 (60.5)</td>
<td>0.70</td>
<td></td>
</tr>
</tbody>
</table>

NNT to prevent 1 hospitalization/yr: 4.5 (!)
Time to First CV Hospitalization

Adapted from Maurer et al. N Engl J Med. Published online before print August 27, 2018.
6-Minute Walk Test

Adapted from Maurer et al. N Engl J Med. Published online before print August 27, 2018.
Quality of Life

B Change from Baseline in KCCQ-OS

Pooled tafamidis

P<0.001

Placebo

LS Mean Change from Baseline

Month

No. of Patients
Tafamidis 264 241 221 201 181 170
Placebo 177 159 145 123 96 84

Adapted from Maurer et al. N Engl J Med. Published online before print August 27, 2018.
Safety

• Remarkably safe/well-tolerated
• No adverse events at higher rate than placebo
• More discontinuation of placebo from ‘adverse events’
 • 26% vs. 20%
• No dosing issues in renal dysfunction

Adapted from Maurer et al. N Engl J Med. Published online before print August 27, 2018.
NT-BNP: Placebo - Tafamidis

Difference in NT-BNP (pg/mL)

Adapted from Maurer et al. N Engl J Med. Published online before print August 27, 2018.
The Bottom Line: We Have Effective ATTR Treatments Now!

- Wild-type ATTR Cardiomyopathy:
 - Tafamidis

- Familial ATTR Cardiomyopathy (FAC):
 - Tafamidis

- Familial ATTR Polyneuropathy (FAP):
 - Patisiran

- Mixed familial phenotype:
 - Patisiran or tafamidis

- The future?
 - Knockdown agents for ATTR cardiomyopathy
 - Easier knockdown administration
 - Better stabilizers (AG10)
 - Combined stabilizer/knockdown approach
Take Home Points

• Think about amyloidosis!
 • It’s a not-so-rare “rare” disease

• Importance of determining subtype
 • Biopsy = gold standard
 • PYP/DPD scans: Useful, but only once you have ruled out AL

• AL amyloidosis treatments:
 • We have effective chemotherapy now
 • Limited role for stem cell transplant

• ATTR: New effective therapies are here!

• Importance of multidisciplinary approach, centers of excellence, clinical trials
Stanford Amyloid Center Team

- **Cardiology**: Ronald Witteles, MD & Ronglih Liao, PhD & Matthew Wheeler, MD/PhD & Paul Cheng MD/PhD & Kevin Alexander, MD
- **Hematology**: Michaela Liedtke, MD & Stanley Schrier, MD
- **Bone Marrow Transplant**: Sally Arai, MD
- **Nephrology**: Richard Lafayette, MD & Michelle O’Shaughnessy, MD
- **Neurology**: Safwan Jaradeh, MD & Yuen So, MD/PhD
- **ENT**: Edward Damrose, MD
- **Pathology**: Gerald Berry, MD & Isabella Graef, MD/PhD
- **Gastroenterology**: John Clarke, MD
- **Genetic Counselor**: Julia Platt, CGC
- **Clinical Trials Coordinator**: Stacy Kobayashi, RN
- **Nurse Coordinators**: Trish Ulloa, RN & Marie Lugtu, RN

E-mail: amyloid@stanford.edu
Thank you!